Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 656: 124076, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569976

RESUMO

Vaccines represent a pivotal health advancement for preventing infection. However, because carrier systems with repeated administration can invoke carrier-targeted immune responses that diminish subsequent immune responses (e.g., PEG antibodies), there is a continual need to develop novel vaccine platforms. Zinc carnosine microparticles (ZnCar MPs), which are composed of a one-dimensional coordination polymer formed between carnosine and the metal ion zinc, have exhibited efficacy in inducing an immune response against influenza. However, ZnCar MPs' limited suspendability hinders clinical application. In this study, we address this issue by mixing mannan, a polysaccharide derived from yeast, with ZnCar MPs. We show that the addition of mannan increases the suspendability of this promising vaccine formulation. Additionally, since mannan is an adjuvant, we illustrate that the addition of mannan increases the antibody response and T cell response when mixed with ZnCar MPs. Mice vaccinated with mannan + OVA/ZnCar MPs had elevated serum IgG and IgG1 levels in comparison to vaccination without mannan. Moreover, in the mannan + OVA/ZnCar MPs vaccinated group, mucosal washes demonstrated increased IgG, IgG1, and IgG2c titers, and antigen recall assays showed enhanced IFN-γ production in response to MHC-I and MHC-II immunodominant peptide restimulation, compared to the vaccination without mannan. These findings suggest that the use of mannan mixed with ZnCar MPs holds potential for subunit vaccination and its improved suspendability further promotes clinical translation.

2.
Bioeng Transl Med ; 9(2): e10634, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435811

RESUMO

Influenza virus outbreaks are a major burden worldwide each year. Current vaccination strategies are inadequate due to antigenic drift/shift of the virus and the elicitation of low immune responses. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) immunogens subvert the constantly mutating viruses; however, they are poorly immunogenic on their own. To increase the immunogenicity of subunit vaccines such as this, adjuvants can be delivered with the vaccine. For example, agonists of the stimulator of interferon genes (STING) have proven efficacy as vaccine adjuvants. However, their use in high-risk populations most vulnerable to influenza virus infection has not been closely examined. Here, we utilize a vaccine platform consisting of acetalated dextran microparticles loaded with COBRA HA and the STING agonist cyclic GMP-AMP. We examine the immunogenicity of this platform in mouse models of obesity, aging, and chemotherapy-induced immunosuppression. Further, we examine vaccine efficacy in collaborative cross mice, a genetically diverse population that mimics human genetic heterogeneity. Overall, this vaccine platform had variable efficacy in these populations supporting work to better tailor adjuvants to specific populations.

3.
Int J Pharm ; 652: 123836, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266940

RESUMO

The most common influenza vaccines are inactivated viruses produced in chicken eggs, which is a time-consuming production method with variable efficacy due to mismatches of the vaccine strains to the dominant circulating strains. Subunit-based vaccines provide faster production times in comparison to the traditional egg-produced vaccines but often require the use of an adjuvant to elicit a highly protective immune response. However, the current FDA approved adjuvant for influenza vaccines (MF59) elicits a primarily helper T-cell type 2 (Th2)-biased humoral immune response. Adjuvants that can stimulate a Th1 cellular response are correlated to have more robust protection against influenza. The cyclic dinucleotide cGAMP has been shown to provide a potent Th1 response but requires the use of a delivery vehicle to best initiate its signalling pathway in the cytosol. Herein, acetalated dextran (Ace-DEX) was used as the polymer to fabricate microparticles (MPs) via double-emulsion, electrospray, and spray drying methods to encapsulate cGAMP. This study compared each fabrication method's ability to encapsulate and retain the hydrophilic adjuvant cGAMP. We compared their therapeutic efficacy to Addavax, an MF59-like adjuvant, and cGAMP Ace-DEX MPs provided a stronger Th1 response in vaccinated BALB/c mice. Furthermore, we compared Ace-DEX MPs to spray dried MPs composed from a commonly used polymer for drug delivery, poly(lactic-co-glycolic acid) (PLGA). We observed that all Ace-DEX MPs elicited similar humoral and cellular responses to the PLGA MPs. Overall, the results shown here indicate Ace-DEX can perform similarly to PLGA as a polymer for drug delivery and that spray drying can provide an efficient way to produce MPs to encapsulate cGAMP and stimulate the immune system.


Assuntos
Vacinas contra Influenza , Influenza Humana , Esqualeno , Animais , Camundongos , Humanos , Dextranos , Polissorbatos , Vacinas de Subunidades , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
4.
Bioconjug Chem ; 34(8): 1447-1458, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37458383

RESUMO

The influenza A virus causes substantial morbidity and mortality worldwide every year and poses a constant threat of an emergent pandemic. Seasonal influenza vaccination strategies fail to provide complete protection against infection due to antigenic drift and shift. A universal vaccine targeting a conserved influenza epitope could substantially improve current vaccination strategies. The ectodomain of the matrix 2 protein (M2e) of influenza is a highly conserved epitope between virus strains but is also poorly immunogenic. Administration of M2e and the immunostimulatory stimulator of interferon genes (STING) agonist 3'3'-cyclic guanosine-adenosine monophosphate (cGAMP) encapsulated in microparticles made of acetalated dextran (Ace-DEX) has previously been shown to be effective for increasing the immunogenicity of M2e, primarily through T-cell-mediated responses. Here, the immunogenicity of Ace-DEX MPs delivering M2e was further improved by conjugating the M2e peptide to the particle surface in an effort to affect B-cell responses more directly. Conjugated or encapsulated M2e co-administered with Ace-DEX MPs containing cGAMP were used to vaccinate mice, and it was shown that two or three vaccinations could fully protect against a lethal influenza challenge, while only the surface-conjugated antigen constructs could provide some protection against lethal challenge with only one vaccination. Additionally, the use of a reducible linker augmented the T-cell response to the antigen. These results show the utility of conjugating M2e to the surface of a particle carrier to increase its immunogenicity for use as the antigen in a universal influenza vaccine.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Dextranos/química , Epitopos , Camundongos Endogâmicos BALB C , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Anticorpos Antivirais
5.
Front Immunol ; 14: 1103765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033992

RESUMO

Currently licensed vaccine adjuvants offer limited mucosal immunity, which is needed to better combat respiratory infections such as influenza. Mast cells (MCs) are emerging as a target for a new class of mucosal vaccine adjuvants. Here, we developed and characterized a nanoparticulate adjuvant composed of an MC activator [mastoparan-7 (M7)] and a TLR ligand (CpG). This novel nanoparticle (NP) adjuvant was co-formulated with a computationally optimized broadly reactive antigen (COBRA) for hemagglutinin (HA), which is broadly reactive against influenza strains. M7 was combined at different ratios with CpG and tested for in vitro immune responses and cytotoxicity. We observed significantly higher cytokine production in dendritic cells and MCs with the lowest cytotoxicity at a charge-neutralizing ratio of nitrogen/phosphate = 1 for M7 and CpG. This combination formed spherical NPs approximately 200 nm in diameter with self-assembling capacity. Mice were vaccinated intranasally with COBRA HA and M7-CpG NPs in a prime-boost-boost schedule. Vaccinated mice had significantly higher antigen-specific antibody responses (IgG and IgA) in serum and mucosa compared with controls. Splenocytes from vaccinated mice had significantly increased cytokine production upon antigen recall and the presence of central and effector memory T cells in draining lymph nodes. Finally, co-immunization with NPs and COBRA HA induced influenza H3N2-specific HA inhibition antibody titers across multiple strains and partially protected mice from a challenge against an H3N2 virus. These results illustrate that the M7-CpG NP adjuvant combination can induce a protective immune response with a broadly reactive influenza antigen via mucosal vaccination.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Adjuvantes de Vacinas , Vírus da Influenza A Subtipo H3N2 , Anticorpos Antivirais , Adjuvantes Imunológicos , Vacinação , Adjuvantes Farmacêuticos , Hemaglutininas , Citocinas
6.
Artigo em Inglês | MEDLINE | ID: mdl-36630948

RESUMO

Metal-organic coordination polymers (CPs) are a broad class of materials that include metal-organic frameworks (MOFs). CPs are highly ordered crystalline materials that are composed of metal ions (or metal ion clusters) and multidentate organic ligands that serve as linkers. One-, two-, and three-dimensional CPs can be formed, with 2D and 3D structures referred to as MOFs. CPs have gained a lot of attention due to attractive structural features like structure versatility and tunability, and well-defined pores that enable the encapsulation of cargo. Further, CPs show a lot of promise for drug delivery applications, but only a very limited number of CPs are currently being evaluated in clinical trials. In this review, we outlined features that are desired for CP-based drug delivery platform, and briefly described most relevant characterization techniques. We highlighted some of the recent efforts directed toward developing CP-based drug delivery platforms with the emphasis on vaccines against cancer, infectious diseases, and viruses. We hope this review will be a helpful guide for those interested in the design and evaluation of CP-based immunological drug delivery platforms. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Vacinas Anticâncer , Doenças Transmissíveis , Estruturas Metalorgânicas , Neoplasias , Humanos , Polímeros/química , Agentes de Imunomodulação , Estruturas Metalorgânicas/química , Metais , Neoplasias/tratamento farmacológico
7.
J Control Release ; 351: 883-895, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208792

RESUMO

Effective drug delivery requires ample dosing at the target tissue while minimizing negative side effects. Drug delivery vehicles such as polymeric nanoparticles (NPs) are often employed to accomplish this challenge. In this work, drug release of numerous drugs from surface eroding polymeric NPs was evaluated in vitro in physiologically relevant pH 5 and neutral buffers. NPs were loaded with paclitaxel, rapamycin, resiquimod, or doxorubicin and made from an FDA approved polyanhydride or from acetalated dextran (Ace-DEX), which has tunable degradation rates based on cyclic acetal coverage (CAC). By varying encapsulate, pH condition, and polymer, a range of distinct drug release profiles were achieved. To model the obtained drug release curves, a mechanistic mathematical model was constructed based on drug diffusion and polymer degradation. The resulting diffusion-erosion model accurately described drug release from the variety of surface eroding NPs. For drug release from varied CAC Ace-DEX NPs, the goodness of fit of the developed diffusion-erosion model was compared to several conventional drug release models. The diffusion-erosion model maintained optimal fit compared to conventional models across a range of conditions. Machine learning was then employed to estimate effective diffusion coefficients for the diffusion-erosion model, resulting in accurate prediction of in vitro release of dexamethasone and 3'3'-cyclic guanosine monophosphate-adenosine monophosphate from Ace-DEX NPs. This predictive modeling has potential to aid in the design of future Ace-DEX formulations where optimized drug release kinetics can lead to a desired therapeutic effect.


Assuntos
Dextranos , Nanopartículas , Liberação Controlada de Fármacos , Polímeros , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas
8.
J Control Release ; 347: 356-368, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569585

RESUMO

The current pandemic highlights the need for effective vaccines against respiratory viruses. An ideal vaccine should induce robust and long-lasting responses with high manufacturing scalability. We use an adjuvant comprised of a Stimulator of Interferon Genes (STING) agonist incorporated in a scalable microparticle platform to achieve durable protection against the influenza virus. This formulation overcomes the challenges presented by the cytosolic localization of STING and the hydrophilicity of its agonists. We evaluated a monoaxial formulation of polymeric acetalated dextran microparticles (MPs) to deliver the STING agonist cyclic GMP-AMP (cGAMP) which achieved >10× dose-sparing effects compared to other published work. Efficacy was evaluated in ferrets, a larger animal model of choice for influenza vaccines. cGAMP MPs with recombinant hemagglutinin reduced viral shedding and improved vaccine outcomes compared to a seasonal influenza vaccine. Importantly, sustained protection against a lethal influenza infection was detected a year after a single dose of the vaccine-adjuvant.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Furões , Humanos , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano , Eficácia de Vacinas
9.
ACS Biomater Sci Eng ; 8(4): 1573-1582, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35353486

RESUMO

Influenza virus is a major cause of death on a global scale. Seasonal vaccines have been developed to combat influenza; however, they are not always highly effective. One strategy to develop a more broadly active influenza vaccine is the use of multiple rounds of layered consensus buildings to generate recombinant antigens, termed computationally optimized broadly reactive antigen (COBRA). Immunization with the COBRA hemagglutinin (HA) can elicit broad protection against multiple strains of a single influenza subtype (e.g., H1N1). We formulated a COBRA H1 HA with a stimulator of interferon genes agonist cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) into a nasal gel for vaccination against influenza. The gel formulation was designed to increase mucoadhesion and nasal retention of the antigen and adjuvant to promote a strong mucosal response. It consisted of a Schiff base-crosslinked hydrogel between branched polyethyleneimine and oxidized dextran. Following a prime-boost-boost schedule, an intranasal gel containing cGAMP and model antigen ovalbumin (OVA) led to the faster generation of serum IgG, IgG1, and IgG2c and significantly greater serum IgG1 levels on day 42 compared to soluble controls. Additionally, OVA-specific IgA was detected in nasal, vaginal, and fecal samples for all groups, except the vehicle control. When the COBRA HA was given intranasally in a prime-boost schedule, the mice receiving the gel containing the COBRA and cGAMP had significantly higher serum IgG and IgG2c at day 41 compared to all groups, and only this group had IgA levels above the background in vaginal, nasal, and fecal samples. Overall, this study indicates the utility of an intranasal gel for the delivery of COBRAs for the generation of serum and mucosal humoral responses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Imunoglobulina A , Imunoglobulina G , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/prevenção & controle , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle
10.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884965

RESUMO

Glioblastoma multiforme (GBM) is the most common form of primary brain cancer and has the highest morbidity rate and current treatments result in a bleak 5-year survival rate of 5.6%. Interstitial therapy is one option to increase survival. Drug delivery by interstitial therapy most commonly makes use of a polymer implant encapsulating a drug which releases as the polymer degrades. Interstitial therapy has been extensively studied as a treatment option for GBM as it provides several advantages over systemic administration of chemotherapeutics. Primarily, it can be applied behind the blood-brain barrier, increasing the number of possible chemotherapeutic candidates that can be used and reducing systemic levels of the therapy while concentrating it near the cancer source. With interstitial therapy, multiple drugs can be released locally into the brain at the site of resection as the polymer of the implant degrades, and the release profile of these drugs can be tailored to optimize combination therapy or maintain synergistic ratios. This can bypass the blood-brain barrier, alleviate systemic toxicity, and resolve drug resistance in the tumor. However, tailoring drug release requires appropriate consideration of the complex relationship between the drug, polymer, and formulation method. Drug physicochemical properties can result in intermolecular bonding with the polymeric matrix and affect drug distribution in the implant depending on the formulation method used. This review is focused on current works that have applied interstitial therapy towards GBM, discusses polymer and formulation methods, and provides design considerations for future implantable biodegradable materials.


Assuntos
Antineoplásicos/administração & dosagem , Biopolímeros/química , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/química , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...